### [DOC] spelling fixes

parent 8f4aa488
 ... ... @@ -45,7 +45,7 @@ */ namespace wmath { // Pi constants - we dont use the macro M_PI, because it is not part of the C++-standard. // Pi constants - we don't use the macro M_PI, because it is not part of the C++-standard. // ref.: http://stackoverflow.com/questions/1727881/how-to-use-the-pi-constant-in-c /** the pi constant in float format */ const float piFloat = boost::math::constants::pi(); ... ... @@ -69,7 +69,7 @@ namespace wmath #endif } /** * Checks if the triangle intersects with the given plane. If you are interessted in the points of * Checks if the triangle intersects with the given plane. If you are interested in the points of * intersection if any \see intersection(). * * \param p1 first point of the triangle ... ... @@ -84,13 +84,13 @@ namespace wmath /** * Checks if the given segment intersects with the plane or not. Even if * just one endpoint intersects with the plane it should be returned as * point of intersection. If the segement is totally inside of that plane * point of intersection. If the segment is totally inside of that plane * the first endpoint (which was given: p1 ) should be returned in the * cutPoint parameter. * * \param p The plane to test with intersection * \param p1 The first endpoint of the line segement * \param p2 The second endpoint of the line segement * \param p1 The first endpoint of the line segment * \param p2 The second endpoint of the line segment * \param pointOfIntersection The point of intersection if any, otherwise 0,0,0 * * \return True if an intersection was detected, false otherwise. ... ... @@ -101,12 +101,12 @@ namespace wmath boost::shared_ptr< wmath::WPosition > pointOfIntersection ); /** * Checks a line (consecutive line segements) on intersection with a plane * Checks a line (consecutive line segments) on intersection with a plane * and selects (if there are more than one point of intersection) the * closest to the base point of the plane. * * \param p The plane to test with intersection * \param l The line segements * \param l The line segments * \param cutPoint The return parameter for the point of intersection * * \return True if an intersection was detected, false otherwise. ... ...
 ... ... @@ -61,7 +61,7 @@ public: } /** * Makes the matix contain the identity matrix, i.e. 1 on the diagonal. * Makes the matrix contain the identity matrix, i.e. 1 on the diagonal. */ WMatrix& makeIdentity() { ... ... @@ -100,7 +100,7 @@ public: } /** * Returns a reference to the component an row i, colums j in order to * Returns a reference to the component an row i, columns j in order to * provide access to the component. * \param i row * \param j column ... ... @@ -112,7 +112,7 @@ public: } /** * Returns a const reference to the component an row i, colums j in order to * Returns a const reference to the component an row i, columns j in order to * provide read-only access to the component. * \param i row * \param j column ... ...
 ... ... @@ -58,7 +58,7 @@ public: * \param first First vector perpendicular to the normal * \param second Second vector perpendicular to the normal and linearly independent from first. * * \note Due to numerical stability a comparision to 0.0 is not performed. Instead the absolute value of the dot product is checked to * \note Due to numerical stability a comparison to 0.0 is not performed. Instead the absolute value of the dot product is checked to * be smaller than the FLT_EPS. FLT_EPS is used instead of DBL_EPS just numerical errors may sum up above DBL_EPS. */ WPlane( const wmath::WVector3D& normal, const wmath::WPosition& pos, const wmath::WVector3D& first, const wmath::WVector3D& second ); ... ...
 ... ... @@ -91,7 +91,7 @@ public: size_t getOrder() const; /** * Calculate the generalized fractional anisotropy for this odf. * Calculate the generalized fractional anisotropy for this ODF. * * See: David S. Tuch, "Q-Ball Imaging", Magn. Reson. Med. 52, 2004, 1358-1372 * ... ... @@ -104,9 +104,9 @@ public: double calcGFA( std::vector< wmath::WUnitSphereCoordinates > const& orientations ) const; /** * Calculate the generalized fractional anisotropy for this odf. This version of * Calculate the generalized fractional anisotropy for this ODF. This version of * the function uses precomputed base functions (because calculating the base function values * is rather expensive). Use this version if you want to compute the gfa for multiple ODFs * is rather expensive). Use this version if you want to compute the GFA for multiple ODFs * with the same base functions. The base function Matrix can be computed using \see calcBMatrix(). * * See: David S. Tuch, "Q-Ball Imaging", Magn. Reson. Med. 52, 2004, 1358-1372 ... ... @@ -122,8 +122,8 @@ public: /** * This calculates the transformation/fitting matrix T like in the 2007 Descoteaux paper. The orientations are given as wmath::WVector3D. * \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI) * \param order The order of the spherical harmonics intented to create * \param lambda Regularisation parameter for smoothing matrix * \param order The order of the spherical harmonics intended to create * \param lambda Regularization parameter for smoothing matrix * \param withFRT include the Funk-Radon-Transformation? * \return Transformation matrix */ ... ... @@ -135,8 +135,8 @@ public: /** * This calculates the transformation/fitting matrix T like in the 2007 Descoteaux paper. The orientations are given as wmath::WUnitSphereCoordinates . * \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI) * \param order The order of the spherical harmonics intented to create * \param lambda Regularisation parameter for smoothing matrix * \param order The order of the spherical harmonics intended to create * \param lambda Regularization parameter for smoothing matrix * \param withFRT include the Funk-Radon-Transformation? * \return Transformation matrix */ ... ... @@ -146,9 +146,9 @@ public: bool withFRT ); /** * Calculates the base matrix B like in the diss of Descoteaux. * Calculates the base matrix B like in the dissertation of Descoteaux. * \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI) * \param order The order of the spherical harmonics intented to create * \param order The order of the spherical harmonics intended to create * \return The base Matrix B */ static wmath::WMatrix calcBaseMatrix( const std::vector< wmath::WUnitSphereCoordinates >& orientations, int order ); ... ...
 ... ... @@ -713,7 +713,7 @@ public: /** * Compare this WTensorBaseSym to another one. * * \param other The WBensorBaseSym to compare to. * \param other The WTensorBaseSym to compare to. * * \return True, iff this tensors' elements are equal to another tensors' elements. */ ... ... @@ -722,7 +722,7 @@ public: /** * Compare this WTensorBaseSym to another one. * * \param other The WBensorBaseSym to compare to. * \param other The WTensorBaseSym to compare to. * * \return True, iff this tensors' elements are not equal to another tensors' elements. */ ... ...
 ... ... @@ -151,7 +151,7 @@ void jacobiEigenvector3D( WTensorSym< 2, 3, Data_T > const& mat, /** * Calculate eigenvectors via the characteristic polynomial. This is essentially the same * function as in the gpu glyph shaders. This is for 3 dimensions only. * function as in the GPU glyph shaders. This is for 3 dimensions only. * * \param m The symmetric matrix to calculate the eigenvalues from. * \return A std::vector of 3 eigenvalues in descending order. ... ...
 ... ... @@ -54,8 +54,8 @@ public: WUnitSphereCoordinates( double theta, double phi ); /** * Constructor for euclidean coordinates. * \param vector euclidean coordinates * Constructor for Euclidean coordinates. * \param vector Euclidean coordinates */ explicit WUnitSphereCoordinates( wmath::WVector3D vector ); ... ... @@ -87,7 +87,7 @@ public: void setPhi( double phi ); /** * Returns the stored sphere coordinates as euclidean coordinates. * Returns the stored sphere coordinates as Euclidean coordinates. */ wmath::WVector3D getEuclidean() const; ... ... @@ -102,4 +102,3 @@ private: } #endif // WUNITSPHERECOORDINATES_H
 ... ... @@ -123,7 +123,7 @@ public: } /** * Adds a the argument componentwise to the components of this WValue * Adds a the argument component-wise to the components of this WValue * \param rhs The right hand side of the assignment */ WValue& operator+=( const WValue& rhs ) ... ... @@ -135,7 +135,7 @@ public: } /** * Subtracts the argument componentwise from the components of this WValue * Subtracts the argument component-wise from the components of this WValue * \param rhs The right hand side of the assignment */ WValue& operator-=( const WValue& rhs ) ... ... @@ -158,7 +158,7 @@ public: } /** * Scales each component of this WValue with the coressponding * Scales each component of this WValue with the corresponding * component of the given argument WValue * \param rhs The right hand side of the assignment */ ... ... @@ -183,7 +183,7 @@ public: /** * Componentwise addition. * Component-wise addition. * \param summand2 The right hand side of the summation */ const WValue operator+( const WValue& summand2 ) const ... ... @@ -195,7 +195,7 @@ public: } /** * Componentwise subtraction. * Component-wise subtraction. * \param subtrahend The right hand side of the subtraction */ const WValue operator-( const WValue& subtrahend ) const ... ... @@ -207,7 +207,7 @@ public: } /** * Componentwise multiplication. * Component-wise multiplication. * \param factor2 The right hand side of the product */ const WValue operator*( const WValue& factor2 ) const ... ... @@ -348,7 +348,7 @@ template< typename T > inline const WValue< T > operator/( const WValue< T >& lh * \param os The operator will write to this stream. * \param rhs This will be written to the stream. * * \return the outputstream * \return the output stream */ template< typename U > inline std::ostream& operator<<( std::ostream& os, const WValue< U > &rhs ) { ... ... @@ -361,7 +361,7 @@ template< typename U > inline std::ostream& operator<<( std::ostream& os, const * \param in the input stream * \param rhs the value to where to write the stream * * \return the inputstream * \return the input stream */ template< typename U > inline std::istream& operator>>( std::istream& in, WValue< U >& rhs ) { ... ...
 ... ... @@ -68,7 +68,7 @@ public: inline WVector3D( osg::Vec3d::value_type x, osg::Vec3d::value_type y, osg::Vec3d::value_type z ); /** * Calculate euclidean square distance between this Position and another one. * Calculate Euclidean square distance between this Position and another one. * * \param other The other position. * \return Square distance. ... ... @@ -81,18 +81,18 @@ public: inline osg::Vec3d::value_type norm() const; /** * Returns a noralized vecrsion of the vector * Returns a normalized version of the vector */ inline WVector3D normalized() const; /** * Compute the cross product of the current WValue with the parameter. * Compute the cross product of the current WVector3D with the parameter. * \param factor2 This vector will be multiplied with the current vector. (right hand side of the product) */ const WVector3D crossProduct( const WVector3D& factor2 ) const; /** * Compute the dot product of the current WValue with the parameter. * Compute the dot product of the current WVector3D with the parameter. * \param factor2 This vector will be multiplied with the current vector. (right hand side of the product) */ inline osg::Vec3d::value_type dotProduct( const WVector3D& factor2 ) const; ... ... @@ -108,7 +108,7 @@ public: inline size_t size() const; /** * Componentwise subtraction. * Component-wise subtraction. * \param subtrahend The right hand side of the subtraction */ inline const WVector3D operator-( const WVector3D& subtrahend ) const; ... ... @@ -127,7 +127,7 @@ typedef WVector3D WPosition; * \param os The operator will write to this stream. * \param rhs This will be written to the stream. * * \return the outputstream * \return the output stream */ inline std::ostream& operator<<( std::ostream& os, const WVector3D &rhs ) ... ... @@ -138,12 +138,12 @@ inline std::ostream& operator<<( std::ostream& os, const WVector3D &rhs ) } /** * Write an input stream into a WValue. * Write an input stream into a WVector3D. * * \param in the input stream * \param rhs the value to where to write the stream * * \return the inputstream * \return the input stream */ inline std::istream& operator>>( std::istream& in, WVector3D &rhs ) { ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment