Commit 07842619 authored by Alexander Wiebel's avatar Alexander Wiebel
Browse files

[DOC] spelling fixes

parent 8f4aa488
......@@ -45,7 +45,7 @@
*/
namespace wmath
{
// Pi constants - we dont use the macro M_PI, because it is not part of the C++-standard.
// Pi constants - we don't use the macro M_PI, because it is not part of the C++-standard.
// ref.: http://stackoverflow.com/questions/1727881/how-to-use-the-pi-constant-in-c
/** the pi constant in float format */
const float piFloat = boost::math::constants::pi<float>();
......@@ -69,7 +69,7 @@ namespace wmath
#endif
}
/**
* Checks if the triangle intersects with the given plane. If you are interessted in the points of
* Checks if the triangle intersects with the given plane. If you are interested in the points of
* intersection if any \see intersection().
*
* \param p1 first point of the triangle
......@@ -84,13 +84,13 @@ namespace wmath
/**
* Checks if the given segment intersects with the plane or not. Even if
* just one endpoint intersects with the plane it should be returned as
* point of intersection. If the segement is totally inside of that plane
* point of intersection. If the segment is totally inside of that plane
* the first endpoint (which was given: p1 ) should be returned in the
* cutPoint parameter.
*
* \param p The plane to test with intersection
* \param p1 The first endpoint of the line segement
* \param p2 The second endpoint of the line segement
* \param p1 The first endpoint of the line segment
* \param p2 The second endpoint of the line segment
* \param pointOfIntersection The point of intersection if any, otherwise 0,0,0
*
* \return True if an intersection was detected, false otherwise.
......@@ -101,12 +101,12 @@ namespace wmath
boost::shared_ptr< wmath::WPosition > pointOfIntersection );
/**
* Checks a line (consecutive line segements) on intersection with a plane
* Checks a line (consecutive line segments) on intersection with a plane
* and selects (if there are more than one point of intersection) the
* closest to the base point of the plane.
*
* \param p The plane to test with intersection
* \param l The line segements
* \param l The line segments
* \param cutPoint The return parameter for the point of intersection
*
* \return True if an intersection was detected, false otherwise.
......
......@@ -61,7 +61,7 @@ public:
}
/**
* Makes the matix contain the identity matrix, i.e. 1 on the diagonal.
* Makes the matrix contain the identity matrix, i.e. 1 on the diagonal.
*/
WMatrix& makeIdentity()
{
......@@ -100,7 +100,7 @@ public:
}
/**
* Returns a reference to the component an row i, colums j in order to
* Returns a reference to the component an row i, columns j in order to
* provide access to the component.
* \param i row
* \param j column
......@@ -112,7 +112,7 @@ public:
}
/**
* Returns a const reference to the component an row i, colums j in order to
* Returns a const reference to the component an row i, columns j in order to
* provide read-only access to the component.
* \param i row
* \param j column
......
......@@ -58,7 +58,7 @@ public:
* \param first First vector perpendicular to the normal
* \param second Second vector perpendicular to the normal and linearly independent from first.
*
* \note Due to numerical stability a comparision to 0.0 is not performed. Instead the absolute value of the dot product is checked to
* \note Due to numerical stability a comparison to 0.0 is not performed. Instead the absolute value of the dot product is checked to
* be smaller than the FLT_EPS. FLT_EPS is used instead of DBL_EPS just numerical errors may sum up above DBL_EPS.
*/
WPlane( const wmath::WVector3D& normal, const wmath::WPosition& pos, const wmath::WVector3D& first, const wmath::WVector3D& second );
......
......@@ -91,7 +91,7 @@ public:
size_t getOrder() const;
/**
* Calculate the generalized fractional anisotropy for this odf.
* Calculate the generalized fractional anisotropy for this ODF.
*
* See: David S. Tuch, "Q-Ball Imaging", Magn. Reson. Med. 52, 2004, 1358-1372
*
......@@ -104,9 +104,9 @@ public:
double calcGFA( std::vector< wmath::WUnitSphereCoordinates > const& orientations ) const;
/**
* Calculate the generalized fractional anisotropy for this odf. This version of
* Calculate the generalized fractional anisotropy for this ODF. This version of
* the function uses precomputed base functions (because calculating the base function values
* is rather expensive). Use this version if you want to compute the gfa for multiple ODFs
* is rather expensive). Use this version if you want to compute the GFA for multiple ODFs
* with the same base functions. The base function Matrix can be computed using \see calcBMatrix().
*
* See: David S. Tuch, "Q-Ball Imaging", Magn. Reson. Med. 52, 2004, 1358-1372
......@@ -122,8 +122,8 @@ public:
/**
* This calculates the transformation/fitting matrix T like in the 2007 Descoteaux paper. The orientations are given as wmath::WVector3D.
* \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI)
* \param order The order of the spherical harmonics intented to create
* \param lambda Regularisation parameter for smoothing matrix
* \param order The order of the spherical harmonics intended to create
* \param lambda Regularization parameter for smoothing matrix
* \param withFRT include the Funk-Radon-Transformation?
* \return Transformation matrix
*/
......@@ -135,8 +135,8 @@ public:
/**
* This calculates the transformation/fitting matrix T like in the 2007 Descoteaux paper. The orientations are given as wmath::WUnitSphereCoordinates .
* \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI)
* \param order The order of the spherical harmonics intented to create
* \param lambda Regularisation parameter for smoothing matrix
* \param order The order of the spherical harmonics intended to create
* \param lambda Regularization parameter for smoothing matrix
* \param withFRT include the Funk-Radon-Transformation?
* \return Transformation matrix
*/
......@@ -146,9 +146,9 @@ public:
bool withFRT );
/**
* Calculates the base matrix B like in the diss of Descoteaux.
* Calculates the base matrix B like in the dissertation of Descoteaux.
* \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI)
* \param order The order of the spherical harmonics intented to create
* \param order The order of the spherical harmonics intended to create
* \return The base Matrix B
*/
static wmath::WMatrix<double> calcBaseMatrix( const std::vector< wmath::WUnitSphereCoordinates >& orientations, int order );
......
......@@ -713,7 +713,7 @@ public:
/**
* Compare this WTensorBaseSym to another one.
*
* \param other The WBensorBaseSym to compare to.
* \param other The WTensorBaseSym to compare to.
*
* \return True, iff this tensors' elements are equal to another tensors' elements.
*/
......@@ -722,7 +722,7 @@ public:
/**
* Compare this WTensorBaseSym to another one.
*
* \param other The WBensorBaseSym to compare to.
* \param other The WTensorBaseSym to compare to.
*
* \return True, iff this tensors' elements are not equal to another tensors' elements.
*/
......
......@@ -151,7 +151,7 @@ void jacobiEigenvector3D( WTensorSym< 2, 3, Data_T > const& mat,
/**
* Calculate eigenvectors via the characteristic polynomial. This is essentially the same
* function as in the gpu glyph shaders. This is for 3 dimensions only.
* function as in the GPU glyph shaders. This is for 3 dimensions only.
*
* \param m The symmetric matrix to calculate the eigenvalues from.
* \return A std::vector of 3 eigenvalues in descending order.
......
......@@ -54,8 +54,8 @@ public:
WUnitSphereCoordinates( double theta, double phi );
/**
* Constructor for euclidean coordinates.
* \param vector euclidean coordinates
* Constructor for Euclidean coordinates.
* \param vector Euclidean coordinates
*/
explicit WUnitSphereCoordinates( wmath::WVector3D vector );
......@@ -87,7 +87,7 @@ public:
void setPhi( double phi );
/**
* Returns the stored sphere coordinates as euclidean coordinates.
* Returns the stored sphere coordinates as Euclidean coordinates.
*/
wmath::WVector3D getEuclidean() const;
......@@ -102,4 +102,3 @@ private:
}
#endif // WUNITSPHERECOORDINATES_H
......@@ -123,7 +123,7 @@ public:
}
/**
* Adds a the argument componentwise to the components of this WValue
* Adds a the argument component-wise to the components of this WValue
* \param rhs The right hand side of the assignment
*/
WValue& operator+=( const WValue& rhs )
......@@ -135,7 +135,7 @@ public:
}
/**
* Subtracts the argument componentwise from the components of this WValue
* Subtracts the argument component-wise from the components of this WValue
* \param rhs The right hand side of the assignment
*/
WValue& operator-=( const WValue& rhs )
......@@ -158,7 +158,7 @@ public:
}
/**
* Scales each component of this WValue with the coressponding
* Scales each component of this WValue with the corresponding
* component of the given argument WValue
* \param rhs The right hand side of the assignment
*/
......@@ -183,7 +183,7 @@ public:
/**
* Componentwise addition.
* Component-wise addition.
* \param summand2 The right hand side of the summation
*/
const WValue operator+( const WValue& summand2 ) const
......@@ -195,7 +195,7 @@ public:
}
/**
* Componentwise subtraction.
* Component-wise subtraction.
* \param subtrahend The right hand side of the subtraction
*/
const WValue operator-( const WValue& subtrahend ) const
......@@ -207,7 +207,7 @@ public:
}
/**
* Componentwise multiplication.
* Component-wise multiplication.
* \param factor2 The right hand side of the product
*/
const WValue operator*( const WValue& factor2 ) const
......@@ -348,7 +348,7 @@ template< typename T > inline const WValue< T > operator/( const WValue< T >& lh
* \param os The operator will write to this stream.
* \param rhs This will be written to the stream.
*
* \return the outputstream
* \return the output stream
*/
template< typename U > inline std::ostream& operator<<( std::ostream& os, const WValue< U > &rhs )
{
......@@ -361,7 +361,7 @@ template< typename U > inline std::ostream& operator<<( std::ostream& os, const
* \param in the input stream
* \param rhs the value to where to write the stream
*
* \return the inputstream
* \return the input stream
*/
template< typename U > inline std::istream& operator>>( std::istream& in, WValue< U >& rhs )
{
......
......@@ -68,7 +68,7 @@ public:
inline WVector3D( osg::Vec3d::value_type x, osg::Vec3d::value_type y, osg::Vec3d::value_type z );
/**
* Calculate euclidean square distance between this Position and another one.
* Calculate Euclidean square distance between this Position and another one.
*
* \param other The other position.
* \return Square distance.
......@@ -81,18 +81,18 @@ public:
inline osg::Vec3d::value_type norm() const;
/**
* Returns a noralized vecrsion of the vector
* Returns a normalized version of the vector
*/
inline WVector3D normalized() const;
/**
* Compute the cross product of the current WValue with the parameter.
* Compute the cross product of the current WVector3D with the parameter.
* \param factor2 This vector will be multiplied with the current vector. (right hand side of the product)
*/
const WVector3D crossProduct( const WVector3D& factor2 ) const;
/**
* Compute the dot product of the current WValue with the parameter.
* Compute the dot product of the current WVector3D with the parameter.
* \param factor2 This vector will be multiplied with the current vector. (right hand side of the product)
*/
inline osg::Vec3d::value_type dotProduct( const WVector3D& factor2 ) const;
......@@ -108,7 +108,7 @@ public:
inline size_t size() const;
/**
* Componentwise subtraction.
* Component-wise subtraction.
* \param subtrahend The right hand side of the subtraction
*/
inline const WVector3D operator-( const WVector3D& subtrahend ) const;
......@@ -127,7 +127,7 @@ typedef WVector3D WPosition;
* \param os The operator will write to this stream.
* \param rhs This will be written to the stream.
*
* \return the outputstream
* \return the output stream
*/
inline std::ostream& operator<<( std::ostream& os, const WVector3D &rhs )
......@@ -138,12 +138,12 @@ inline std::ostream& operator<<( std::ostream& os, const WVector3D &rhs )
}
/**
* Write an input stream into a WValue.
* Write an input stream into a WVector3D.
*
* \param in the input stream
* \param rhs the value to where to write the stream
*
* \return the inputstream
* \return the input stream
*/
inline std::istream& operator>>( std::istream& in, WVector3D &rhs )
{
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment