Commit c48a0694 authored by Stefan Philips's avatar Stefan Philips
Browse files

[DOC] Added documentation to the calculation of matrixes functions.

parent 5d0cb6c6
......@@ -40,7 +40,6 @@ namespace wmath
*/
class OWCOMMON_EXPORT WSymmetricSphericalHarmonic // NOLINT
{
// TODO(all): implement test
// friend class WSymmetricSphericalHarmonicTest;
public:
/**
......@@ -73,7 +72,7 @@ public:
double getValue( const WUnitSphereCoordinates& coordinates ) const;
/**
* Returns the used coefficients (stored like in the mentioned Descoteaux paper).
* Returns the used coefficients (stored like in the mentioned 2007 Descoteaux paper).
*/
const wmath::WValue<double>& getCoefficients() const;
......@@ -89,33 +88,37 @@ public:
/**
* calcLj
* This calculates the l_j array (std::vector) for the given order.
* \param order order
*/
static void calcLj( size_t order );
/**
* m_lj
* The l_j array stores the order to the index.
* index: j={1,2,3,4,5,6,7,8, ...} order l_j={0,2,2,2,2,2,4,4,...}
*/
static std::vector<size_t> m_lj;
/**
* getSHFittingMatrix
* \param orientations orientations
* \param order order
* \param lambda lambda
* \param withFRT withFRT
* \return Matrix
* This calculates the transformation/fitting matrix T like in the 2007 Descoteaux paper. The orientations are given as wmath::WVector3D.
* \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI)
* \param order The order of the spherical harmonics intented to create
* \param lambda Regularisation parameter for smoothing matrix
* \param withFRT include the Funk-Radon-Transformation?
* \return Transformation matrix
*/
static wmath::WMatrix<double> getSHFittingMatrix( const std::vector< wmath::WVector3D >& orientations, int order, double lambda, bool withFRT );
static wmath::WMatrix<double> getSHFittingMatrix( const std::vector< wmath::WVector3D >& orientations,
int order,
double lambda,
bool withFRT );
/**
* getSHFittingMatrix
* \param orientations orientations
* \param order order
* \param lambda lambda
* \param withFRT withFRT
* \return Matrix
* This calculates the transformation/fitting matrix T like in the 2007 Descoteaux paper. The orientations are given as wmath::WUnitSphereCoordinates .
* \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI)
* \param order The order of the spherical harmonics intented to create
* \param lambda Regularisation parameter for smoothing matrix
* \param withFRT include the Funk-Radon-Transformation?
* \return Transformation matrix
*/
static wmath::WMatrix<double> getSHFittingMatrix( const std::vector< wmath::WUnitSphereCoordinates >& orientations,
int order,
......@@ -123,24 +126,24 @@ public:
bool withFRT );
/**
* calcBMatrix
* \param orientations orientations
* \param order order
* \return Matrix
* Calculates the base matrix B like in the diss of Descoteaux.
* \param orientations The vector with the used orientation on the unit sphere (usually the gradients of the HARDI)
* \param order The order of the spherical harmonics intented to create
* \return The base Matrix B
*/
static wmath::WMatrix<double> calcBMatrix( const std::vector< wmath::WUnitSphereCoordinates >& orientations, int order );
static wmath::WMatrix<double> calcBaseMatrix( const std::vector< wmath::WUnitSphereCoordinates >& orientations, int order );
/**
* calcSmoothingMatrix
* \param order order
* \return Matrix
* This calcs the smoothing matrix L from the 2007 Descoteaux Paper "Regularized, Fast, and Robust Analytical Q-Ball Imaging"
* \param order The order of the spherical harmonic
* \return The smoothing matrix L
*/
static wmath::WMatrix<double> calcSmoothingMatrix( size_t order );
/**
* calcFRTMatrix
* \param order order
* \return Matrix
* Calculates the Funk-Radon-Transformation-Matrix P from the 2007 Descoteaux Paper "Regularized, Fast, and Robust Analytical Q-Ball Imaging"
* \param order The order of the spherical harmonic
* \return The Funk-Radon-Matrix P
*/
static wmath::WMatrix<double> calcFRTMatrix( size_t order );
protected:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment