Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
OpenWalnut Core OpenWalnut Core
  • Project overview
    • Project overview
    • Details
    • Activity
    • Releases
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 82
    • Issues 82
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Analytics
    • Analytics
    • Repository
    • Value Stream
  • Wiki
    • Wiki
  • Members
    • Members
  • Activity
  • Graph
  • Create a new issue
  • Commits
  • Issue Boards
Collapse sidebar
  • OpenWalnut
  • OpenWalnut CoreOpenWalnut Core
  • Wiki
  • DiffusionIndices

Last edited by Alexander Wiebel Jul 09, 2017
Page history

DiffusionIndices

Diffusion Indices

Suppose \underline{D} is a second order diffusion tensor (3x3 matrix) with eigenvalues \lambda\_i at a given voxel then several kinds of anisotropy measures are defined as follows:

Linear Anisotropy

LA :=_{df} \frac{\lambda_1 -\lambda_2}{\sqrt{\lambda_1^2+\lambda_2^2+\lambda_3^2} }

Fractional Anisotropy

See (http://dx.doi.org/10.1006/jmrb.1996.0086) for definition:

FA :=_{df} \sqrt{\frac{1}{2} } \frac{\sqrt{(\lambda_1-\lambda_2)^2 + (\lambda_2-\lambda_3)^2 + (\lambda_3-\lambda_1)^2} }{\sqrt{\lambda_1^2+\lambda_2^2+\lambda_3^2} }

This is identical to (http://rsl.stanford.edu/moseley/tensorcalc/tensorcalc/Output/FA.html):

\frac{\sqrt{3} }{\sqrt{2} }\frac{\sqrt{(\lambda_1-\lambda)^2+(\lambda_2-\lambda)^2+(\lambda_3-\lambda)^2} }{\sqrt{\lambda_1^2+\lambda_2^2+\lambda_3^2} }

with \lambda = \frac{1}{3} tr(\underline{D}) = \frac{1}{3}(\lambda_1+\lambda_2+\lambda_3)

Clone repository
  • Compiling OpenWalnut with MSVC on Windows
  • DeveloperTools
  • DiffusionIndices
  • Documentation
  • Downloads
  • EditorConfiguration
  • FAQ
  • FiberSimilarityMetrics
  • FirstSteps
  • Getting_OpenWalnut
  • Glossary
  • How to download, install and run OpenWalnut AppImage
  • How to use OpenWalnut for SIVERT
  • HowtoDocumentCode
  • IllustrativeConnectivityVisualization
View All Pages